
Industry Foundation Classes - Release 2.0

IFC Object Model Architecture Guide

Beta - January 10, 1999

International Alliance for Interoperability
Enabling Interoperability in the AEC/FM Industry

Industry Foundation Classes - Release 1.5

IFC Object Model Architecture Guide

Enabling Interoperability in the AEC/FM Industry

Copyright 1996-99 - International Alliance of Interoperability (IAI)

Mailing address: 2960 Chain Bridge Road - Suite 143
Oakton, Virginia 22124

Email address: IAI@Interoperability.com

Web Address: www.Interoperability.com

All rights reserved. No part of the contents of this document may be reproduced or
transmitted in any form or by any means without the written permission of the
copyright holder (IAI).

Document Editor

Editor Thomas Liebich
Development committee Specification Task Force

Document Control

Project reference IFC Release 2.0
Document reference IFC Object Model Architecture Guide
Document version IFC Release 2.0 – Beta
Release date January 10, 1998
Status For Comments
Distribution IAI Member Companies
Distribution format PDF file

Revisions
Rev. Person Date Description
Alpha Thomas Liebich 10-Aug-98 Alpha release
Beta, d1 Thomas Liebich 18-Dec-98 Beta release
Beta, d2 Richard See 10-Jan-99 Std. front end, page layout, fix figures indexing

Table of Contents Page i

Copyright International Alliance for Interoperability - 1996-1999 IFC Release 2.0

Table of Contents

1 INTRODUCTION AND BACKGROUND...1
1.1 ABOUT THIS DOCUMENT ...1
1.2 ASSUMPTIONS AND ABBREVIATIONS ...1

2 BASELINE OF IFC MODEL ARCHITECTURE ..2
2.1 SHORT HISTORY OF INFORMATION MODELING...2
2.2 IFC MODEL ARCHITECTURE PRINCIPLES ..3

3 IFC MODEL ARCHITECTURE DECOMPOSITION..5
3.1 RESOURCE LAYER ...5

3.1.1 Resource schemas for R1.5 ...5
3.1.2 Resource schemas for R2.0 ...5

3.2 CORE LAYER ...6
3.2.1 Kernel..6
3.2.2 Core Extensions..6
3.2.3 Core schemas for R1.5 ...7
3.2.4 Core schemas for R2.5 ...7

3.3 INTEROPERABILITY LAYER..7
3.3.1 Interoperability schemas for R1.5 ...8
3.3.2 Interoperability schemas for R2.0 ...8
3.3.3 Adapter Definitions..8

3.4 DOMAIN/APPLICATIONS LAYER ...8
3.4.1 Domain Models for R1.5 ...9
3.4.2 Domain Models for R2.0 ...9

Page ii Table of Contents

IFC Release 2.0 Copyright International Alliance for Interoperability - 1996-1999

IFC Object Model Architecture Guide Page 1

Copyright International Alliance for Interoperability - 1996-1999 IFC Release 2.0

1 Introduction and Background

1.1 About this document

The document has been developed to serve as the underlying guide for the design of the IFC object model.
The intended audience is the Specification Task Force (STF), the Technical Coordinators (TC's) of the
constituent IAI chapters, and the technical co-chairs of the domain projects. The STF is responsible for
applying these guidelines during the development of IFC object model specifications.

1.2 Assumptions and Abbreviations

This document assumes the reader is reasonably familiar with the following:
• AEC/FM market and project terminology
• Software industry terminology
• Concepts and terminology associated with object oriented software
• Concepts and terminology associated with information modeling

The following abbreviations are used throughout the IFC Specifications:
• AEC/FM Architectural, Engineering, Construction and Facilities Management
• AP Application Protocol
• Arch Architecture
• CM Construction Management
• CORBA Common Object Request Broker Architecture
• COM Microsoft’s Component Object Model
• DCE Distributed Computing Environment
• DCOM Microsoft’s Distributed Component Object Model
• DSOM IBM’s Distributed System Object Model
• FM Facilities Management
• FTP File Transfer Protocol
• GUID Globally Unique Identifier
• HVAC Heating, Ventilating and Air Conditioning
• HTTP Hypertext Transport Protocol
• IAI International Alliance for Interoperability
• IDL Interface Definition Language
• IFC Industry Foundation Classes
• IM Information Model
• ISO International Standards Organization
• FM Facilities Management
• MIDL Microsoft’s Interface Definition Language
• ODL Microsoft’s Object Description Language
• OMG Object Management Group
• ORB Object Request Broker
• OSF Open Software Foundation
• RPC Remote Procedure Call
• SOM IBM’s System Object Model
• STEP Standard for the Exchange of Product Model Data
• TCP/IP Transmission Control Protocol/Internet Protocol
• TQM Total Quality Management
• URL Universal Resource Locator

Page 2 IFC Object Model Architecture Guide

IFC Release 2.0 Copyright International Alliance for Interoperability - 1996-1999

2 Baseline of IFC Model Architecture
The scope defined by the IAI for the IFC Object Model is "enabling interoperability between AEC/FM
applications from different software vendors". The AEC/FM industry is, by its nature, fragmented and
distributed. It also encompasses a very large set of object model requirements. Many axes can be described
along which model requirements occur and can alter, such as:

• disciplines involved in AEC/FM processes
• life-cycle stages of AEC/FM projects
• level of detail required

In order to satisfy all model requirements the IFC Object Model has to be structured in order to allow both,
diversification to cope with the various information axes, and centralization to harmonize and integrate the
various diversified modules.

Development of an information model being of the size of the IFC Object Model requires team work and
distributed responsibilities. The structure of the information model has to provide for both, encapsulated
modules for relatively autonomous work, and overall rigid structure to facilitate a centralized integration of that
work.

In understanding this, it becomes obvious that the IFC Object Model must be decomposed into smaller and
more manageable modules, which are interconnected by a rigid overall structure. This document provides the
rationale for such structure and presents the architecture for the IFC Object Model.

2.1 Short History of Information Modeling

The IFC Object Model, including its architecture, had been developed based on experience from earlier
projects, most notably the European ESPRIT projects, ATLAS (7280), COMBI (6909), and VEGA (20408),
and the development within ISO 10303, Product Data Representation and Exchange (STEP), most notably
the Building Construction Core Model (BCCM)1.

Information Modeling is nowadays a widely accepted methodology for the development of exchange protocol
specification in engineering domains, such as architecture and building. The modeling approach or
architecture had been further developed along the various projects carried out in various engineering
domains. These developed from integration of applications in specialized domains to the development of a
platform for interoperability through distributed product models. Another reason for different model
approaches certainly was the state of knowledge at the corresponding time2.

At the beginning two very generic models had been developed and the ideas (more than the actual content)
are still influential. The General AEC Reference Model (GARM) was developed for the STEP project3. The
GARM provides a first basic concept by introducing the 'Product Definition Unit' (PDU) and its subtypes
'functional unit' and 'technical solution'. The Building Systems Model (BSM), also shows a top down strategy
to model a building4. It introduces functional systems as, e.g., enclosure, structural, mechanical, etc. and their
entities.

The ESPRIT project IMPACT very intensively studied fundamental modeling principles as specialization,
discrimination and orthogonalization as well as implementation principles as extension and instantiation. The
model introduced the technique of ‘layered models', a concept to structure a number of models at different
levels of abstraction. This architecture allows for the specification of Information Models with a larger scope.

The question remained how an information model that would cover the needs of all disciplines involved in the
whole life cycle has to be structured. Several strategies had been developed to divide the universe of
discourse into partial models. The ESPRIT project ATLAS defined 'view type models' and the ESPRIT project

1 Wix, J. and Liebich, T. [1997] ISO TC 184/SC4/ WG3/N599, working draft, version T300
2 The following summary is an excerpt from Junge, R. and Liebich, T. [1998] Product Modeling Technology – the

Foundation of Industry Foundation Classes, Amor, R. (ed.) Product and Process Modeling in the Building Industry,
ISBN 1 86081 249 X

3 Gielingh, W., [1988] General AEC Reference Model, ISO TC 184/SC4/WG1 DOC N.3.2.2.1
4 Turner, J., [1990] Building Systems Model. ISO TC 184/SC4/WG1 Working paper

IFC Object Model Architecture Guide Page 3

Copyright International Alliance for Interoperability - 1996-1999 IFC Release 2.0

COMBI uses 'partial models' and 'application models'. Although the solutions are slightly different, a way has
been found that leads to practical information models for the building industry.

Next questions are raised, as how can partial models communicate. There are essential two strategies and a
compromise.

1. There is a 'central' part of the modeling domain that would be shared by all partial models. Or, every
entity that is shared by two or more 'views', as specified in partial models, has to reside in the central
core. This approach assumes a homogeneous world. The philosophy is applied in STEP where every
AP can only use and further constrain definitions already provided in the Integrated Generic
Resources.

2. All partial models are autonomous and an intelligent kernel provides communication mechanism based
on mapping techniques. This approach assumes a heterogeneous world. The ESPRIT project COMBI
developed such an intelligent communicator.

3. The compromise approach defines a minimal kernel, that pre-harmonizes all partial models, but also
provides for mapping mechanism to communicate with disperse models surrounding the harmonized
part. The IFC Object Model follows this approach.

2.2 IFC Model Architecture Principles

The IFC Object Model Architecture has been developed using a set of principles governing it's organization
and structure. These principles focus on basic requirements and can be summarized as:

• provide a modular structure to the model.
• provide a framework for sharing information between different disciplines within the AEC/FM industry.
• ease the continued maintenance and development of the model.
• enable information modelers to reuse model components
• enable software authors to reuse software components
• facilitate the provision of better upward compatibility between model releases

The IFC Object Model architecture provides a modular structure for the development of model components,
the 'model schemas'. There are four conceptual layers within the architecture, which use a strict referencing
hierarchy. Within each conceptual layer a set of model schemas is defined.

The first conceptual layer (shown at the bottom in Figure 1) provides Resource classes used by classes in the
higher levels. The second conceptual layer provides a Core project model. This Core contains the Kernel and
several Core Extensions. The third conceptual layer provides a set of modules defining concepts or objects
common across multiple application types or AEC industry domains. This is the Interoperability layer. Finally,
the fourth and highest layer in the IFC Object Model is the Domain/Applications Layer. It provides set of
modules tailored for specific AEC industry domain or application type. Additionally, this layer contains
specialized model 'adapters' to non-IFC domain/application models.

The architecture operates on a 'ladder principle'. At any layer, a class may reference a class at the same or
lower layer but may not reference a class from a higher layer. References within the same layer must be
designed very carefully in order to maintain modularity in the model design.

Inter-domain references at the Domain Models layer must be resolved through 'common concepts' defined in
the Interoperability layer. If possible, references between modules at the Resource layer should be avoided in
order to support the goal that each resource module is self-contained. However, there are some low level,
general purpose resources, such as measurement and identification that are referenced by many other
resources.

Ladder principle expanded:

1. Resource classes may only reference or use other Resources.

2. Core classes may reference other Core classes (subject to the limitations listed in 3) and may
reference classes within the Resource layer without limitations. Core classes may not reference or use
classes within the Interoperability or Domain/Applications layer.

3. Within the Core layer the 'ladder principle' also applies. Therefore, Kernel classes can be referenced or
used by classes in the Core Extensions but the reverse is not allowed. Kernel classes my not
reference Core Extension classes.

Page 4 IFC Object Model Architecture Guide

IFC Release 2.0 Copyright International Alliance for Interoperability - 1996-1999

4. Interoperability layer classes can reference classes in the Core or Resource layers, but not in the
Domain/Applications layer.

5. Domain/Applications layer classes may reference any class in the Interoperability, Core and Resource
layers. Additionally, classes defined within custom Interoperability Adapters (interfaces to domain or
application models developed by others) may reference classes within the Interoperability layer.

Interoperability Modules

U
se

Extension Modules

Domain/Application Modules

Kernel

C
o

re
 L

ay
er

R
es

o
u

rc
e

L
ay

er
D

o
m

ai
n

/A
p

p
s

L
ay

er

Resource Modules

T
yp

eO
f

U
se

U
se

U
se

U
se

U
se

U
se

U
se

T
yp

eO
f

T
yp

eO
f

T
yp

eO
f

U
se

U
se

In
te

ro
p

L
ay

er

External
Domain/App

Models

M
ap

Interoperability Adapter

M
ap

T
yp

eO
f

Figure 1 Layering Concept of IFC architecture

IFC Object Model Architecture Guide Page 5

Copyright International Alliance for Interoperability - 1996-1999 IFC Release 2.0

3 IFC Model Architecture Decomposition
The current version of the IFC Model Architecture for Release consists of the following layers, each of which
will be discussed in turn.

• Resource Layer
• Core Layer

• Kernel
• Extensions

• Interoperability Layer
• Domain/Applications Layer

3.1 Resource Layer

Resources form the lowest layer in IFC Model Architecture and can be used or
referenced by classes in the other layers. Resources can be characterized as general
purpose or low level concepts or objects which do not rely on any other classes in the
model for their existence. There are a few exceptions to this characterization. Classes
from the Utility and Measure Resources are used by other, higher level resource classes.

All Resources represent individual business concepts. For instance, all information
concerning the concept of cost is collected together within the cost schema, the IfcCostResource. Any
classes within the Core, Interoperability or Domain/Application layers which need to use cost will reference
this resource.

Similarly, all ideas concerning geometry are collected together within the IfcGeometryResource.
Fundamental geometric entity definitions are defined in this resource. More specialized attribute driven
geometry constructs are also defined here. Geometry will be referenced by classes defined within the Core
and higher levels through the representation resource, also provided at the resource layer. However some
details within the IfcGeometryResource are hidden from classes in these higher layers. There is no
implication of choice for one of these representations coming from the resource layer, it simply provides the
definition. A Core model object may utilize several geometry entities for representation.

3.1.1 Resource schemas for R1.5

Within the IFC Release 1.5 project scope the following resources schemas are included. Note that IFC
Release 1.0 included many of these resources.

• IfcUtilityResource (object identification, object history, general purpose tables)
• IfcMeasureResource (units of measure, standard measurement types, custom measurement types)
• IfcGeometryResource (attribute driven geometric representation items, explicit geometric representation

items, topological representation items, geometric models)
• IfcPropertyTypeResource (fundamental property types, property type definitions, property sets, shape

representation)
• IfcPropertyResource (extended property types: material, cost, actor, classification, time)

3.1.2 Resource schemas for R2.0

Within the IFC Release 2.0 project scope the following resource schemas are included. Note that IFC
Release 2.0 further elaborates the modularity and encapsulation of resource schemas

• IfcUtilityResource
• IfcMeasureResource
• IfcGeometryResource
• IfcTopologyResource (was part of IfcGeometryResource in IFC Release 1.5)
• IfcGeometricModelResource (was part of IfcGeometryResource in IFC Release 1.5)
• IfcPropertyResource
• IfcMaterialResource (was part of IfcPropertyResource in IFC Release 1.5)
• IfcCostResource (was part of IfcPropertyResource in IFC Release 1.5)

Utility
Resource

Page 6 IFC Object Model Architecture Guide

IFC Release 2.0 Copyright International Alliance for Interoperability - 1996-1999

• IfcActorResource (was part of IfcPropertyResource in IFC Release 1.5)
• IfcClassificationResource (was part of IfcPropertyResource in IFC Release 1.5)
• IfcDateAndTimeResource (was part of IfcPropertyResource in IFC Release 1.5)
• IfcRepresentationResource (was part of IfcPropertyResource in IFC Release 1.5)

3.2 Core Layer

The Core forms the next layer in IFC Model Architecture. Classes defined here can
be referenced and specialized by all classes in the Interoperability and Domain/
Application layers. The Core layer provides the basic structure of the IFC object
model and defines most abstract concepts that will be specialized by higher layers of
the IFC object model.

The Core includes two levels of abstraction:

1. The Kernel

2. Core Extensions

Goals for Core Model Design:
• definition of the common superset of those concepts that later can be refined and used by various

interoperability and domain models
• pre-harmonization of domain models by providing this common superset
• stable definition of the object model foundation to support upgrade compatible IFC Releases

3.2.1 Kernel

The Kernel provides all the basic concepts required for IFC models within the scope of the current IFC
Release. The Kernel also determines the model structure and decomposition. Concepts defined in the kernel
are, necessarily, abstracted to a high level. The kernel also includes fundamental concepts concerning the
provision of objects, relationships, type definitions, attributes and roles. The Kernel can be envisioned as a
kind of Meta Model that provides the platform for all model extensions. The constructs that form the Kernel
are very generic and are not AEC/FM specific, although they will only be used for AEC/FM purposes due to
the specialization by Core Extensions. The Kernel constructs will be included as a mandatory part of all IFC
implementations.

The Kernel is the foundation of the Core Model. Kernel classes may reference classes in the Resource layer
but may not reference those in the other parts of the Core or in higher level model layers. The use of
Resources will be facilitated by well defined interfaces within resource schemata. Thus, the design detail for
any particular resource will be hidden from referencing classes within the Kernel.

3.2.2 Core Extensions

Core Extensions, as the name implies, provide extension or specialization of concepts defined in the Kernel.
Core Extensions are therefore, the first refinement layer for abstract Kernel constructs. More specifically, they
extend Kernel constructs for use within the AEC/FM industry. Each Core Extension is a specialization of
classes defined in the Kernel. Figure 2 shows the further specialization of classes rooted in the IfcKernel.

Beyond this class specialization, primary relationships and roles are also defined within the Core Extensions.

Product
Extension

IFC Object Model Architecture Guide Page 7

Copyright International Alliance for Interoperability - 1996-1999 IFC Release 2.0

IfcObject

IfcProcess

IfcProductIfcProductExtension

IfcProcessExtension

KernelCore
Extension

IfcModelingAid

IfcDocument

IfcModelingAidExtension

IfcDocumentExtension

Figure 2 Core Extensions from Kernel Classes

A class defined within a Core Extension may be used or referenced by classes defined in the Inteoperability
or Domain/Applications layers, but not by a class within the Kernel or in the Resource layer. References
between Core Extensions have to be defined very carefully in a way that allows the selection of a singular
Core Extension without destroying data integrity by invalid external references.

3.2.3 Core schemas for R1.5

Within the IFC Release 1.5 project scope the following core schemas are included. Note that IFC Release
1.0 included many of these resources.

• IfcKernel
• IfcProductExtension
• IfcProcessExtension
• IfcModelingAidExtension
• IfcDocumentExtension

3.2.4 Core schemas for R2.5

Within the IFC Release 2.0 project scope the following core schemas are included.
• IfcKernel
• IfcProductExtension
• IfcProcessExtension
• IfcModelingAidExtension
• IfcDocumentExtension
• IfcProjectMgmtExtension
• IfcConstraintExtension

3.3 Interoperability Layer

The main goal in the design of Interoperability Layer is the provision of
modules defining concepts or objects common to two or more domain/
application models. The commonly used, 'common concept' modules
enable interoperability between different domain or application models.
Introduction of this model layer is the best example of a general purpose
model design guideline, that the model should incorporate a 'Plug-In'
architecture -- allowing multiple domain or application models to be 'Plugged
into' the common IFC Core. Such a 'Plug-In' architecture will also support

Shared Bldg Elements

Page 8 IFC Object Model Architecture Guide

IFC Release 2.0 Copyright International Alliance for Interoperability - 1996-1999

outsourcing the development of domain/application models.

3.3.1 Interoperability schemas for R1.5

Within the IFC Release 1.5 project scope the following schemas are defined in the Interoperability layer:
• IfcSharedBldgElements (all fundamental building elements shared between domains)
• IfcSharedBldgServiceElements (all fundamental building service elements shared between domains)

3.3.2 Interoperability schemas for R2.0

Within the IFC Release 2.0 project scope the following schemas are defined in the Interoperability layer:
• IfcSharedBldgElements
• IfcSharedBldgServiceElements
• IfcSharedSpatialElements

3.3.3 Adapter Definitions

Although not yet used in the current IFC Release the concept of an 'adapter' is foreseen to access various
domain models, including disperse models (i.e. those defined outside the International Alliance for
Interoperability). The main requirements for Adapters are the facilitation of:

1. Direct Plug-In of IFC developed Domain Models, that is a direct reference and use of Core definitions
by the appropriate Domain Models through the provision of interoperable class definitions at the
Interoperability layer. This is currently the only applied technique.

2. Plug-In of externally developed, non harmonized, Domain Models via an Adapter that provides a
mapping mechanism down to Core and Interoperability definitions. The definition of the Adapter Plug is
in the responsibility of the Domain Model developer and is part of the Domain Model Layer.

3. Establish an inter-domain exchange mechanism above the Core to enable interoperability across
domains. This includes a container mechanism to package information. Therefore an Adapter is used
where the definition of the Adapter is the responsibility of all Domain Models sharing this Adapter Plug.

The Adapters are based on Core Extension definitions and enhance those Core Extension definitions. Those
enhancements provide common concepts for all Domain Models that might further refine these concepts. As
an example, the Building Element Socket provides the definition of a common wall, whereas the Architectural
Domain Model will enhance this common wall with its private subtypes and type definitions within Release 3.0
time frame. An Adapter Socket that is used by several Domain Models therefore provides a medium level of
interoperability through shared Adapter Socket definitions.

IFC Domain extensions that tightly couple with the Core Model such as those defined within the IFC Model
(i.e., HVAC and Architecture) do not require an additional mapping of Domain Model definitions down to Core
definitions, therefore they do not need specific Adapter.

Non-IFC harmonized models can be connected to the IFC Core Model through a mapping defined by a
specific Adapter. This methods needs to be further elaborated within the Release 3.0 time frame. For specific
high-level inter-domain exchange, that cannot be satisfied by common definitions in the Core, the Adapter
may provide a specific inter-domain mapping. This Adapter type has to be developed within Release 3.0 time
frame as well.

3.4 Domain/Applications Layer

Domain/Applications Models provide further model detail within the scope
requirements for an AEC/FM domain process or a type of application. Each is a
separate model which may use or reference any class defined in the Core and
Independent Resource layers. Examples of Domain Models are Architecture, HVAC,
FM, Structural Engineering etc. A main purpose of Domain Models is the provision of
specialized type definitions that are tailored for the use within this domain.

Architecture

IFC Object Model Architecture Guide Page 9

Copyright International Alliance for Interoperability - 1996-1999 IFC Release 2.0

Part of the Domain Model definition is the definition of the Adapter Plugs if needed. Fully harmonized IFC
Domain Models will be directly plugged in the Core definitions. Domain Models which are non fully
harmonized have to provide appropriate Adapter Plug definitions in order to be enabled to use the IFC model
framework. The Adapter Sockets provide the guidelines to develop those Plugs. If inter-domain
interoperability has to be achieved that extends the common shared Core definitions, those Domain Model
developments have to be combined in order to provide an interoperable Plug.

3.4.1 Domain Models for R1.5

Within the IFC Release 1.5 project scope the following Domain Models are included:
• IfcArchitecture
• IfcFacilitiesMgmt

3.4.2 Domain Models for R2.0

Within the IFC Release 1.5 project scope the following Domain Models are included:
• IfcArchitectureDomain
• IfcFacilitiesMgmtDomain
• IfcHVACDomain
• IfcCostEstimatingDomain

